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Abstract. Time varying correlations are often estimated with dynamic condi-
tional correlation, generalized autoregressive conditional heteroskedasticity (DCC-
GARCH) models which are based on a linear structure in both GARCH and DCC
parts. In this paper, a Markov regime-switching dynamic conditional correlation,
generalized autoregressive conditional heteroscedasticity (MS-DCC-GARCH) model
is proposed in order to capture the time variations and structural breaks in both
GARCH and DCC processes. The parameter estimates are driven by first order
Markov chain. We provide simulation study to examine the accuracy of the model
and apply it for empirical analysis of the dynamic volatility correlations between
commodity prices and market risks. The proposed model is clearly preferred in
terms of likelihood, Akaike information criterion (AIC), and likelihood ratio test.

Keywords:

1 Introduction

It is well known that there exists co-movement of financial volatilities more or less
closely over time across assets and markets. Hence it is important to take into account
this time varying co-movement. To date, there are various models capable of measuring
the dynamic volatility and correlations between market risk and other assets; for in-
stance, the multivariate GARCH (generalized autoregressive conditional heteroskedas-
ticity) model. This model estimates the covariance matrix between the assets by extend-
ing a univariate GARCH into a multivariate GARCH model. To extend the univariate
to multivariate GARCH under the dynamic context, the dynamic copula and dynamic
conditional correlation (DCC) is proposed to decompose the conditional covariance ma-
trix into a conditional standard deviation matrix and a conditional correlation matrix,
for example dynamic conditional correlation DCC-GARCH (Engle, 2002) and dynamic
copula-GARCH (Patton, 2006). Although these dynamic linear approaches have been
undertaken for time varying variance and correlations, but with limitations; for example,
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there are not take into account the nonlinear structure in dynamic correlations. Empir-
ical cvidences suggested that the behavior of cconomic and financial time scrics may
exhibit different patterns over time (see, Billio and Caporin, (2005), Pastpipatkul, et
al. 2016)). Hence, instead of using the linear conditional variance, it has become more
natural to extend the linear model into the model that properly reflects those struc-
tural change patterns. As a consequence, the Markov Switching model was extended to
those linear models (see, Billio and Caporin, (2005),Da Silva Filho, Ziegelmann, and
Dueker, 2012). However, many practitioners; in fact, have recently paid more attention
to considering more than two assets. Therefore, the Markov Switching dynamic bivari-
ate copula of Da Silva Filho, Ziegelmann, and Dueker (2012) has dissatisfied many
practitioners who worked on multivariate volatilities and correlations.

In this work, we focus on the Markov Switching dynamic correlation GARCH (MS-
DCC-GARCH) model of Billio and Caporin, (2005). The model has the flexibility of
univariate GARCH but not the complexity of conventional multivariate GARCH. The
model is estimated in two steps: firstly, a series of univariate GARCH parameters are
estimated and then dynamic conditional correlation parameters are estimated in the sec-
ond step. In other words, the parameters to be estimated in the correlation and GARCH
processes are independent (Engle, 2002). In the extension of Billio and Caporin (2005),
the model was modified to allow only a dynamic correlation to switch between two
or more regimes. Therefore, they restricted the regime dependent structure only to the
DCC parameters excluding GARCH parameters. They mentioned that the model in
which all parameters are allowed to switch might lead to unstable results and difficult
to reach the global maximum likelihood due to the large number of switching parame-
ters. However, we are still concerned about the consistency and asymptotic normality of
this two-step estimation. We need to have a reasonable regularity conditions to ensure
that the first step will cnsurc consistency of the sccond step. The maximum of the scc-
ond step will be a function of the first stcp paramecter cstimatcs, so these two steps need
to be consistency. To overcome this problem, our study modifies the likelihood func-
tion of MS-DCC-GARCH of Billio and Caporin (2005) by incorporating a likelihood
of DCC to likelihood of Multivariate GARCH in order to do a one-step maximum like-
lihood and also modifies possible change in all parameters in both GARCH and DCC
parts.

The main objective of this research is to extend MS-DCC GARCH of Billio and Ca-
porin (2005) by allowing the parameters in mean, variance and correlation equations
to switch across different regimes or to be state dependent according to the first order
Markov process. This means that all parameters are governed by a state variable S;
which is assumed to evolve according to S;_; with transition probability. Then the one
step maximum likelihood is constructed as an estimator of the model. Subsequently, we
apply our model to study the dynamic volatility correlations between commodity prices
and market risks. :

Measuring the dynamic volatility correlations between commodity prices and market
risks has an important implication for economic growth and investment. The increased
integration between financial markets and the commodity markets provides an alter-
native way for investors to invest, diversify and hedge their portfolio’s risks. To man-
age the portfolio’s risks, investors and regulators need to take into account the corre-
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lation between asscts across intcrnational financial markets. This study therefore aims
to investigate the relationship between the agricultural commodity prices in the light of
the risk perceptions and uncertainty that led to the global financial crisis. We consider
the indicators of the perceived global risk and global market conditions, namely, the
Volatility (VIX) index and Credit Default Swaps (CDS). These two indicators are the
benchmark proxy for the risk perception of investors (Ggzgor, Kablamac, 2014). As
a consequence, in this study, we will show the performance of our model to measure
the dynamic correlation and volatility among agricultural commodities including corn,
wheat, and soybean; and global risk including VIX index and CDS.

The organization of this paper is as follows. Section 2 describes the methodologies used
in the model. Section 3 conducts a simulation study to evaluate and illustrate our model.
Section 4 employs the proposed model to investigate the dynamics between three agri-
cultural commodities and market risks. Finally, we provide concluding remarks in Sec-
tion 5.

2 Methodology

In (his study, our concern is on the non-linear behavior of financial data which entitles
the conventional DCC-GARCH model not appropriate for describing the correlation
and volatility of the returns of the assets. To deal with this problem, a Markov Switch-
ing dynamic conditional correlation GARCH (MS-DCC-GARCH) is considered in this
study. We generalizes the MS-DCC-GARCH model of Billio and Caporin (2005), Pel-
letier (2006) and Chen (2009) in that the parameters to be estimated in the GARCH and
DCC processes are dependent and allowed to vary across regimes.

2.1 Univariate GARCH(1,1) Model

In the application study, the GARCH (1,1) model is sufficient to capture the volatil-
ity clustering in the data (Bollerslev, Chou and Kroner, 1992).Thus, the GARCH(1,1)
specification for the volatility spillover model follows Bollerslev (1986) and is specificd

as
rig = ui+ & =i+ \/O',%,ai,:, ¢8)

2 2 2
Of; = 040+ 01 &1 + Bi,107, 1, 2

where r;, is return of asset { at time ¢, u; is constant term, & is the error term com-
posed of a sequence of iid standardized residual with normal distribution ,a;,, and
conditional variance, 0',-2‘,. Bollerslev (1986) provides a systematic framework for as-
set volatility modeling which has proved particularly valuable in time series with time-
varying variance, O'i‘q;t as presented in Eq.2. Some restrictions are set in this model as
follows: ag > 0,01 > 0,; >0, and (0oq + B1) < 1. The latter constraint on o + B
implies that the unconditional variance of r; is finite.
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2.2 DCC-GARCH(,1) Model

The DCCGARCH model is the extension of GARCH model with the purpose to capture
multivariate volatility (see, Eagle, 2002). The advantage of the DCC model is that we
can estimate the time-varying correlations between multi dimensional returns instead
of a constant correlation (CCC model of Bollerslev (1990)). Considering n-dimensional
return series R; we can write multivariate DCC-GARCH as:

R =U +\/H?A, 3)
H; = DsZ, Dy, 4

where U is n x 1 vector of constants, A; is n X T matrix of standardized residuals.
H; is n x T matrix of conditional variances from univariate GARCH model in sec-
tion 2.1. Z; is the conditional correlation matrix of the standardized residuals &;;. D; =

djag(crl1 52, o ,0‘,},{2 is the diagonal matrix composed of the conditional variance of n
returns. Z; is given by:
x=1/2 o x—1/2
z=07"007"", ®)
then, the DCC equation can be specilied by
0 =(1-61—6)C+ 601+ 62618, (6)

= 17z . " : : .

where, O = T Y. &-_1€/ ; is the unconditional covariance matrix of the standardized
t=1

residuals , &_1 = {€1¢-1,--- ,Exs—1} and O] is a diagonal matrix with the square root

of the diagonal elements of Q;. The coefficients 6; and 6, must satisfy: 0 < 8+ 62 < 1.

2.3 Markov switching DCC-GARCH(1,1)

As we mentioned before, the study aims to allow all parameters to switch across states
or regimes. Thus, the general form of the Markov switching DCC- GARCH(1,1) model
can be written as :

R =U++/HsAs,, (7
Hg, = D5, Zs, Ds,, @
Zs, = 0505057, ©

05,4 = (1= 815, — 625,) Os, s + 02,5,05,.4-1+ 2,5, 5,185, 41, (10)

where Eq.(7) and Eq.(8) are the mean and variance equations, respectively, and they
are allowed to switch across regime. The feature of the Markov switching model is the
estimated parameters in mean, variance and correlation equations, Eq.(7), Eq.(8) and
Eq.(9), can switch across different regimes or are state dependent according to the first
order Markov process. This means that all parameters are governed by a state variable
S; which is assumed to evolve according to S;—; with transition probability, p;;, thus

J
P(Si=U8 =8 =pi ) pij=1, fori=1,-,J. (11)
j=1
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In this study, two rcgimes arc considered thus, the first order Markov process could be
written as:

P(S;=1 Si—1=1)=pn
P(S;=18_1=2)=p1>
P(S;=2|S-1=1)=pn
P(S;=2|8i-1=2)=pm

12)

Let ® = (U, as,, Bs,, 01,5, 62,5, P11, p22) be the vector of model parameters. From Egs.
(7-10), according to Eagle (2002), we can write the likelihood function of DCC-GARCH(1,1)
as

L(®) = L,(6) - Lz(a, B), (13)

where L,(6) and Lz{c, ) are volatility part and a correlation part, respectively. Thus,
we can rewrite our likelihood of Markov switching DCC-GARCH(1,1) as

L(®s,) =Ly(8s,)---Lz(0ts,,Bs,). (14)
where
L,(6s,) =I]:I——-—1—k-——exp{~£€££s,}, (15)
i1 (2m)/2 2
and
La(Us,. 05, Bs,) H(Zﬂ)k P %egzs—tles,}. (16)

Therefore, we will denote the full likelihood of Markov switching DCC-GARCH(1,1)
with J regimes for k assets by

T K
L(®St|rl.h - rkt Z (HHL(Q&lrkl) (Pr(Sl —]|@Sl))> (17)

Jj=1 \t=lk=1

2.4 Hamilton Filter

According o Eq.(17), the filtered probability Pr(S; = j|@;s,) is an important process
Lo assign estimated coefficient and variance parameters into two dillerent regimes. The
most famous filtering approach is introduced in Hamilton (1989) called the Hamilton
Filter. Suppose, we assume two- regime Markov switching DCC-GARCH, then the
Hamilton filter is executed according to the following algorithm.

1. Given an initial guess of transition probabilities which are the probabilities P of
switching between regimes, the transition probabilities of two regimes are

- [Pu PIZ] (18)
p21 P22 :
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2. Update the transition probabilities of each state with the past information includ-
ing the parameters in the system equation, @s,_, and P, for calculating the likelihood
function in each state at time ¢. After that, the probabilities of being in each state are to
be updated by the following formula

oo 1| ¢ = @5, YPr(S; = j| @
Pr(S; = 7)|8s) = Jf(r1,t k| St = jOs,_ )Pr(S; = j|Os,_,) - (19)

}:.lf(rl,r,"' ,rk1|Sr =j@S,_1 )Pr(st = jl@s,_])
J=

where f(ris, - ,7ke| Sy = jOs,_, ) is the full likelihood function in Eq.(10) and Pr(S; = j|Os,_,)
is a filtered probability.
3. Iterate steps 1 and 2 fort =1,---,T.

3 . Simulation study.

In this section, we examine the accuracy of the proposed model by conducting a simu-
lation study. To this end, we consider a two-regime MS-DCC-GARCH with 3 variables
as follows:

o}, = 0.001+0.02¢7, ; +0.7067,_,,
03, = 0.003+0.05},_; +0.7003,_;,
o3, =0.004+0.04¢f, ,+0.800%, ,,
0Os,s = (1—0.01 ~0.95)0s, , +0.950s, ;-1 +0.95¢s,,_, 85, |

>St=1

(20)

67, =0.009+0.07¢}, ;+0.9007, |,
o3, =0.002+0.02¢5,_,+0.9503, ,,
07, =0.0006+0.15¢7,_, +0.8003,_;,
Qs+ = (1-0.02-0.60)Qs, , +0.60Qs,,-1 +0.60¢s,, ,&5,, )

>Sr=2

In this simulation, the model is simulated based on a normal distribution. Moreover, we
consider three sample sizes :7 = 1000, T =2000, and 7 = 3000. We randomly the state
variable S; from a first-order Markov process taking values {1,2} and set p;; = 0.90
and p,; = 0.85.

From the simulation results in Table 1, we can see that the estimated parameters are
close to their true values in the first column. In addition, when the number of sample is
largcr, the model performs more accurate. Furthcrmore, the result of filtered probabili-
ties is also plotted in Figure 1 and we can see that the Hamilton Filter algorithm works
well in capturing the hidden state in the data since the estimated smoothed probabilities
(red line) are close to true probabilities (blue line). Thus, the simulation results show
that the proposed model is accurate and efficient.
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Table 1. Simulation results

Parameter TRUE Estimated
T=1000  T=2000 _ T=3000
001,51 0.001 0.0006  0.0005 0.0006
o1,5,=1 002  0.001 0.0015 0.0021
Bi1,s,=1 07  0.8008 0.7998 0.8098
02,51 0.003  0.002 0.0017 0.002
2.5=1 0.005  0.0003 0.0027 0.005
Bias,=1 0.7  0.7998 0.7994 0.8023
003,5,=1 0.004  0.0047 0.004 0.0042
Q13,5,=1 0.04 0.0001 0.0047 0.004
Biz,s=1 08 07997 07996  0.8086
o01,5,=2 0.009 00257  0.0241 0.0275
o1.5,=2 007 00538  0.0548 0.0614
Biis—2 09 08896  0.8878 0.8882
o02,5,=2 0.005 00467  0.0481 0.0477
a2,5,=2 002 0016 0.0161 0.0155
Bia,s,=2 095 0.8984  0.8873 0.8865
o3,5,=2 0.006 0.0084  0.0068 0.0078
3,52 015  0.043 0.206 0.1445
Biz,s=2 0.8  0.8936 0.8972 0.904
B1.5,-1 001  0.0078 0.0079 0.0079
62,51 095 09213 0.9203 0.9205
01,5,=2 0.02 00149 0.013 0.0146
62,5,=2 06  0.5005 0.5 0.5002
Py 09 08943 0.8953 0.8944
P 085 08794 08751 0.8682

Source : calculation

Fig. 1. Simulated smoothed probabilities and estimates probabilities (blue =true line, red =esti-
mates)
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4 Real data estimation

4.1 Data Description

Table 2. Descriptive statistics

Corn  Wheat Soybean VIX  CDS
Mean 0.0004 0.0002 0.0003 —0.0001 0.0002
Median 0.001 —0.0002 0.0018 —0.0041 —0.0025
Maximum 0.0881 0.0693 0.1013 0.3394 0.1661
Minimum —0.1104 —0.0738 —0.115 —0.2416 —0.1284
Std.Dev. 00195 002 0.0173 0063 0.0307
Skewness —0.4234 0.1337 —0.8318 0.6309 0.4223
Kurtosis 6.1143 3.8794 8.9886 5.7896 5.9205
Jarque-Bera 271.6729 22.0375 1007.616 244.514 241.0787
Probability 0 0 0 0 0
ADF-Prob. 0 0 0 0 0

Source : calculation

We examine a systematic relationship between agricultural commodity prices consist-
ing of Corn, Wheat, and Soybean futures. We also consider the role of the global market
risks over the period from 1/4/2005 through 31/3/2017, covering 625 observations. The
frequency used in this study is the weekly closing prices. The data set is obtained from
Thomson Data stream database. To measure the effect of global market risks, we use
the VIX index of the Chicago Board Options Exchange (CBOE) and the Credit Default
Swaps (CDS) in the US market. Then, all weekly observations are converted into re-
turns in a standard method as log differences.

The descriptive statistics of return series are shown in Table 2. We can see that the
returns show similar characteristics. All returns exhibit high kurtosis but small skew-
ness. This indicates that these returns have a small tail. Furthermore, the normality of
returns is strongly rejected by the normality Jarque-Bera test, with probability=0.000.
In addition, the result of the Augmented Dickey-Fuller (ADF) test suggests that the null
hypothesis of the unit root test can be rejected and that all the variables are stationary at
level under the 1% confidence level.

5 Empirical findings
51 MS-DCC-GARCH(1,1) results

Table 3 reports two-regime MS-DCC-GARCH (1, 1) estimation results for all pairs to
examine the regime dependent dynamic conditional correlation and variance. Note that,
our model allows the GARCH and DCC parameters to vary across the regimes. It is
clear from the table that almost all parameters are highly significant at 1%. The degree
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Table 3. MS-DCC-GARCH parameters estimated

Regime 1
GARCH
Corn - Wheat Soybean VIX CDS
0.0001*** 0.0002 0.0001*** 0.0015*  0.0003**
%,5=1 (0.00001) (0.431) (0.00001) (0.00001)  (0.00001)
0.0554 0.0903 0.1901***  0.0658 0.1545%*
*1,5,=1 (0.1450) (0.184) (0.00001) (0.4953) (0.00001)
o 0.8818***  0.8156**  0.8098*** 0.8561***  0.8367***
LSi=1 (0.00001)  (0.0001) (0.00001) (0.00001)  (0.00001)
Unconditional 550 0.9059 09999 09219 0.9912
variance
Regime 2
GARCH
Corn Wheat Soybean VIX CDS
0.0001%** 0.0002 0.0001*** 0.0015**  0.0003***
%0.5=2 (0.00001) (0.431) (0.00001) (0.00001)  (0.00001)
0.0554 0.0903 0.1901***  0.0658 0.1545%*
%0,5=2 (0.1450) (0.184) (0.00001)  (0.4953) (0.00001)
0.8818**  0.8156™*  0.8098*** 0.8561*  0.8367***
%o.5=2 (0.00001)  (0.0001) (0.00001) (0.00001)  (0.00001)
Uneonditional oy 0.9059 09999 09219 0.9912
variance
. 0.1405% 0.8197°F
DCC Regime 1 (0.00001) (0.0001)
. 0.0296** 0.9184**
D R (0.0048) (0.00001)
Transition parameter Duration
0.8513"* 6.7276
ru (0.0001)
0.8172* 5.4689
P2 (0.0001)
Criiesion DCC- MS-DCC- MS-DCC-fixed
GARCH GARCH  GARCH
AIC —12016.42 —12998.54 —12132.35
log-likelihood 6025221 65352703  6087.174
1) LR-test (H0:1 Vs Ha: 2) P-value = 0.0000
2) LR-test (H0:1 Vs Ha: 3) P-value = 0.0000
3) LR-test (H0:2 Vs Ha: 3) P-value = 1.0000

Notes: P values are in parentheses. Parameter estimates are based on the MS-DCC
(1,1)-GARCH(1,1) model.
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of volatility persistence for the model can be obtained by summing ARCH, ¢ s,, and
GARCH , B 5,, parameters. Different from the previous MS-DCC-GARCH models,
our mode] distinguishes the volatility persistence into two regimes. Different results
have been obtained from these parameters. We find that the sum of @5, and By, in
regime 1 is not close to 1 for all returns and also lower than in regime 2, indicating
that volatility is likely to be high in regime 2.The volatility persistence coefficients
measured by ¢ s, + P15, in the GARCH specification are respectively 0.8064, 0.6433,
0.7479, 0.8350, and 0.8914 for the the returns of corn futures, wheat futures, soybean
futures, VIX, and CDS variables in regime 1 and respectively 0.9372, 0.9059, 0.9999,
0.9219, and 0.9912 in regime 2. These findings lead us to interpret regime 1 as low
volatility regime while regime 2 as high volatility regime. Then, considering the regime
dependent conditional correlations, the parameters 6; 5, and 6,5, are highly signifi-
cant in both regimes. Therefore, there are significant correlations among the returns in
both regimes. The estimates 81 5, + 62 5, for across the regimes are not quite different,
the low and high volatility regimes are characterized by different dynamic correlation
structures. Indeed, the sums 6 s, + 8, 5, are 0.9602 (0.9480) for the low (high) volatility
regime. The findings suggest that the low correlation is associated with the high volatil-
ity regime and vice versa regarding the relationship between agricultural commodities
and market risks. Da Silva Filho (2013) and Pathairat.et. al. (2016), have found that
the conditional correlation during market upturns is less than that during market down-
turns. Thus, this confirms that the high correlation mostly exists in the market downturn
or low volatility regime and the low correlation mostly exists in the market upturn or
high volatility regime.

The persistence and regime properties of the these returns as captured by the estimates
of the MS-DCC-GARCH parameters show similar analogous features in terms of transi-
tion probabilities, ergodic (regime) probabilities, and duration in each regime. In the Ta-
ble 3. We denote the probabilities Pr(S; = 1|S;—1 = 1) by p11 and Pr(S; =2|8;_1 =2)
by p22. We can notice that both of the regimes are persistent because of the high val-
ues obtained for the probabilities p;; = 0.8513 and pay = 0.8172. We typically observe
that the agricultural commodities, VIX and CDS have a high probability to spend much
of the time in the low volatility regime, resulting in higher duration estimates for the
low volatility regime compared to the high volatility regime. The duration of the low
volatility regime is 6.7276 weeks while the that of the high volatility regime is 5.4689
weeks.

The estimated MS-DCC-GARCH (1,1) model also produces the probabilities of two
regimes for the period from 2006 to 2016. In this section, we plot only the low volatil-
ity regime probabilities for all the returns presented in Figure 2. Based on the results,
it is evident that the volatility of all returns has mostly taken place in the low volatility
regime, except for the period from 2007 to 2010 (the blue-dashed line). This period
corresponds to the Global finencial crisis in 2007-2008. Our findings confirm the high
volatility of all returns during the financial crisis. This period also coincided with the
expansion of the quantitative easing of the US and the announcement of the Federal
Reserve (FED) that they had decided to launch a new $40 billion a month bond pur-
chase program of the agency Mortgage Back Securities (MBS). Therefore, we expect
that these policies would probably put the high pressure directly to VIX and CDS and
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thereby pushing the high volatility in this regime.

Furthermore, what is interesting is to compare the log-likelihood and AIC of the dif-
ferent models. In this study, we examine the performance of our model MS-DCC-
GARCH(1,1) with regime switching in both GARCH and DCC parts, by comparing
with two other conventional models namely MS-DCC-GARCH with regime switching
only DCC part of Billio and Caporin (2005) and DCC-GARCH with no regime switch-
ing in both GARCH and DCC parts of Eagle (2002). According to the results in Table
3, we observe that our model performs slightly better than the two conventional models
since we obtain the lowest AIC and the highest log- likelihood. However, Billio and
Caporin (2005) mentioned that it is not easy to compare the best fit model through log-
likelihood value, but they proposed to compare the models using the Likelihood ratio
test statistics. The null hypothesis of restricted model (HO) is tested against unrestricted
model (Ha). The results of LR-test statistics reject the first two tests and accept the third
one. This means that our model cannot be rejected by LR-test.

(3
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Fig. 2. Smoothed probabilities of low volatility regime

5.2 Volatility of Returns
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In this section, the volatilities of these returns are plotted in Figure 2. As our model is
two-regime MS-DCC-GARCH (1,1), two-regime conditional volatilities are obtained
from the GARCH process for each regime. Following Gray (1996), the expected condi-
tional volatility was proposed to present the expected conditional volatility of returns.
In this case, we can compute the expected conditional volatility as

2
E(o%) =Y [(wos + o151 +Biis) (Pr(S=j6s))] @D
Si=j

Figure 2 illustrates the expected conditional volatility of all returns. In general, we
can observe that the expected conditional volatilities of corn, wheat, soybean, and CDS
are relatively high during 2007-2008, corresponding to the period of global financial
crisis as we mentioned before. When we compate the value of volatility, we find that
CDS returns present the highest volatility while VIX present the lowest volatility along
our sample period.

5.3 Smoothed correlation of returns
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Fig. 4. Time-varying smoothed correlation between variables

Similar to the expected conditional volatility; in this section, we plot the expected dy-
namic conditional correlations from our model as well as the dynamic conditional corre-
lations obtained from one-regime DCC-GARCH model. Figure 4 provides an evidence
on the conditional correlation obtained from the DCC-GARCH(1,1) model (dash lines)
versus our conditional expected correlation obtained from the MS-DCC-GARCH(1,1)
model (solid lines). By visually evaluating Figure 4, it is apparent that forecasting from
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the MS-DCC-GARCH(1,1) is too noisy to represent the correlation when compared to
DCC-GARCH(1,1). The differences between one-regime and two-regime models al-
low us to recognize the advantages of using the structural change detecting method.
To be clearer, Figure 4 shows a high volatile correlation during the period 2008-2010,
but a less volatile after 2012. This indicates that the Markov Switching approach yields
higher volatilities and may better describe the characteristics in real empirical study.

6 Conclusions and Future research

In this study, we introduce a generalization of Markov Switching dynamic conditional
correlation GARCH (MS-DCC-GARCH) of Billio and Caporin (2005) by allowing for
Markov switches in both GARCH and DCC equations. The transitions between regimes
are governed by a first order Markov chain. We also present a restricted version of
our model where the changes across volatilities and correlations in a given regime are
proportional. According to Hamilton (1989), we employ Hamilton filter algorithm for
model estimation in order to filter the GARCH and DCC equations into two regimes. In
order to break the curse of the consistency and asymptotic normality of this estimator.
We construct the full maximum likelihood of MS-DCC-GARCH and employ a one-step
estimation procedure to estimate all unknown parameters of our model. We then pro-
pose a simulation study to examine the accuracy of our model and find that our model
and cstimation arc accurate and cfficicnt.

An application of this model ia on investigating the dynamic correlations among three
major agricultural commodity prices and two market risks. The comparison of our
regime switching model with the DCC model of Engle (2002) and with the MS-DCC-
GARCH of Billio and Caporin (2005) shows that our model has a better performance.
An interesting aspect of our regime switching model is that we obtain a weak and strong
persistence in the Markov chain, which produces both high and less volatility of dy-
namic correlations along the sample period.
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